En física, el condensado de Bose-Einstein es el estado de agregación de la materia que se da en ciertos materiales a muy bajas temperaturas. La propiedad que lo caracteriza es que una cantidad macroscópica de las partículas del material pasan al nivel de mínima energía, denominado estado fundamental. El condensado es una propiedad cuántica que no tiene análogo clásico.
La superconductividad es un ejemplo de condensado, se le atribuye un efecto cuántico macroscópico óptico al condensado Bose-Einstein de átomos que, al inducirle electromagnéticamente el estado de translucidez, tiene la propiedad de reducir la velocidad de la luz en forma asombrosa. Hasta 20 millones de veces su velocidad en el vacío, equivalente a 17 metros por segundo (m/s).
Explico todo esto porque las computadoras cuánticas realizarán ciertos tipos de operaciones con mucha mayor rapidez que los ordenadores convencionales. Pero hay que superar bastantes retos antes de que estas máquinas ultrarrápidas estén disponibles, entre ellos, la pérdida de orden en los sistemas, un problema conocido como decoherencia cuántica, que empeora a medida que crece la cantidad de bits en una computadora cuántica. Por eso, una solución propuesta es dividir el cómputo entre varias computadoras cuánticas pequeñas que trabajarían juntas de un modo comparable a cómo los módulos de las supercomputadoras multinúcleo de la actualidad cooperan para efectuar operaciones digitales enormes.
Las computadoras cuánticas individuales de un sistema así podrían intercambiar información cuántica usando condensados de Bose-Einstein, que son nubes de átomos ultrafríos en las cuales todos los átomos están exactamente en el mismo estado cuántico. Este enfoque podría superar el problema de la decoherencia al reducir la cantidad de bits necesarios para una computadora individual.
Un equipo de físicos del Instituto Tecnológico de Georgia (Georgia Tech), en la ciudad de Atlanta, Estados Unidos, ha examinado cómo podría funcionar esta comunicación con condensados de Bose-Einstein. Los investigadores determinaron la cantidad de tiempo necesario para que la información cuántica se propague a través de su condensado de Bose-Einstein, estableciendo en esencia la velocidad máxima a la que se podrían comunicar esas pequeñas computadoras cuánticas.

Información adicional en: http://www.gatech.edu/newsroom/release.html?nid=205891
"Cualquier tonto puede hacer las cosas más grandes, más complejas y más violentas. Se necesita un poco de genialidad - y mucho coraje - para moverse en la dirección contraria". Albert Einstein
"End of transmission".
No hay comentarios:
Publicar un comentario